This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Operators on Hilbert spaces
Theorems about operators and functionals
nmlnopgt0i
Metamath Proof Explorer
Description: A linear Hilbert space operator that is not identically zero has a
positive norm. (Contributed by NM , 9-Feb-2006)
(New usage is discouraged.)
Ref
Expression
Hypothesis
nmlnop0.1
⊢ T ∈ LinOp
Assertion
nmlnopgt0i
⊢ T ≠ 0 hop ↔ 0 < norm op ⁡ T
Proof
Step
Hyp
Ref
Expression
1
nmlnop0.1
⊢ T ∈ LinOp
2
1
nmlnop0iHIL
⊢ norm op ⁡ T = 0 ↔ T = 0 hop
3
2
necon3bii
⊢ norm op ⁡ T ≠ 0 ↔ T ≠ 0 hop
4
1
lnopfi
⊢ T : ℋ ⟶ ℋ
5
nmopgt0
⊢ T : ℋ ⟶ ℋ → norm op ⁡ T ≠ 0 ↔ 0 < norm op ⁡ T
6
4 5
ax-mp
⊢ norm op ⁡ T ≠ 0 ↔ 0 < norm op ⁡ T
7
3 6
bitr3i
⊢ T ≠ 0 hop ↔ 0 < norm op ⁡ T