This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ngpxms

Description: A normed group is an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Assertion ngpxms G NrmGrp G ∞MetSp

Proof

Step Hyp Ref Expression
1 ngpms G NrmGrp G MetSp
2 msxms G MetSp G ∞MetSp
3 1 2 syl G NrmGrp G ∞MetSp