This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Infinite Cartesian products
nfixp1
Metamath Proof Explorer
Description: The index variable in an indexed Cartesian product is not free.
(Contributed by Jeff Madsen , 19-Jun-2011) (Revised by Mario Carneiro , 15-Oct-2016)
Ref
Expression
Assertion
nfixp1
⊢ Ⅎ _ x ⨉ x ∈ A B
Proof
Step
Hyp
Ref
Expression
1
df-ixp
⊢ ⨉ x ∈ A B = y | y Fn x | x ∈ A ∧ ∀ x ∈ A y ⁡ x ∈ B
2
nfcv
⊢ Ⅎ _ x y
3
nfab1
⊢ Ⅎ _ x x | x ∈ A
4
2 3
nffn
⊢ Ⅎ x y Fn x | x ∈ A
5
nfra1
⊢ Ⅎ x ∀ x ∈ A y ⁡ x ∈ B
6
4 5
nfan
⊢ Ⅎ x y Fn x | x ∈ A ∧ ∀ x ∈ A y ⁡ x ∈ B
7
6
nfab
⊢ Ⅎ _ x y | y Fn x | x ∈ A ∧ ∀ x ∈ A y ⁡ x ∈ B
8
1 7
nfcxfr
⊢ Ⅎ _ x ⨉ x ∈ A B