This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem nf5-1

Description: One direction of nf5 can be proved with a smaller footprint on axiom usage. (Contributed by Wolf Lammen, 16-Sep-2021)

Ref Expression
Assertion nf5-1 x φ x φ x φ

Proof

Step Hyp Ref Expression
1 exim x φ x φ x φ x x φ
2 hbe1a x x φ x φ
3 1 2 syl6 x φ x φ x φ x φ
4 3 nfd x φ x φ x φ