This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Undirected graphs
Neighbors, complete graphs and universal vertices
Neighbors
nbusgrf1o
Metamath Proof Explorer
Description: The set of neighbors of a vertex is isomorphic to the set of edges
containing the vertex in a simple graph. (Contributed by Alexander van
der Vekens , 19-Dec-2017) (Revised by AV , 28-Oct-2020)
Ref
Expression
Hypotheses
nbusgrf1o.v
⊢ V = Vtx ⁡ G
nbusgrf1o.e
⊢ E = Edg ⁡ G
Assertion
nbusgrf1o
⊢ G ∈ USGraph ∧ U ∈ V → ∃ f f : G NeighbVtx U ⟶ 1-1 onto e ∈ E | U ∈ e
Proof
Step
Hyp
Ref
Expression
1
nbusgrf1o.v
⊢ V = Vtx ⁡ G
2
nbusgrf1o.e
⊢ E = Edg ⁡ G
3
eqid
⊢ G NeighbVtx U = G NeighbVtx U
4
eleq2w
⊢ e = c → U ∈ e ↔ U ∈ c
5
4
cbvrabv
⊢ e ∈ E | U ∈ e = c ∈ E | U ∈ c
6
1 2 3 5
nbusgrf1o1
⊢ G ∈ USGraph ∧ U ∈ V → ∃ f f : G NeighbVtx U ⟶ 1-1 onto e ∈ E | U ∈ e