This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem nbn3

Description: Transfer falsehood via equivalence. (Contributed by NM, 11-Sep-2006)

Ref Expression
Hypothesis nbn3.1 φ
Assertion nbn3 ¬ ψ ψ ¬ φ

Proof

Step Hyp Ref Expression
1 nbn3.1 φ
2 1 notnoti ¬ ¬ φ
3 2 nbn ¬ ψ ψ ¬ φ