This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Undirected graphs
Neighbors, complete graphs and universal vertices
Neighbors
nbgrisvtx
Metamath Proof Explorer
Description: Every neighbor N of a vertex K is a vertex. (Contributed by Alexander van der Vekens , 12-Oct-2017) (Revised by AV , 26-Oct-2020)
(Revised by AV , 12-Feb-2022)
Ref
Expression
Hypothesis
nbgrisvtx.v
⊢ V = Vtx ⁡ G
Assertion
nbgrisvtx
⊢ N ∈ G NeighbVtx K → N ∈ V
Proof
Step
Hyp
Ref
Expression
1
nbgrisvtx.v
⊢ V = Vtx ⁡ G
2
eqid
⊢ Edg ⁡ G = Edg ⁡ G
3
1 2
nbgrel
⊢ N ∈ G NeighbVtx K ↔ N ∈ V ∧ K ∈ V ∧ N ≠ K ∧ ∃ e ∈ Edg ⁡ G K N ⊆ e
4
simp1l
⊢ N ∈ V ∧ K ∈ V ∧ N ≠ K ∧ ∃ e ∈ Edg ⁡ G K N ⊆ e → N ∈ V
5
3 4
sylbi
⊢ N ∈ G NeighbVtx K → N ∈ V