This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
The divides relation
mulmoddvds
Metamath Proof Explorer
Description: If an integer is divisible by a positive integer, the product of this
integer with another integer modulo the positive integer is 0.
(Contributed by Alexander van der Vekens , 30-Aug-2018) (Proof shortened by AV , 18-Mar-2022)
Ref
Expression
Assertion
mulmoddvds
⊢ N ∈ ℕ ∧ A ∈ ℤ ∧ B ∈ ℤ → N ∥ A → A ⁢ B mod N = 0
Proof
Step
Hyp
Ref
Expression
1
simp1
⊢ N ∈ ℕ ∧ A ∈ ℤ ∧ B ∈ ℤ → N ∈ ℕ
2
nnz
⊢ N ∈ ℕ → N ∈ ℤ
3
dvdsmultr1
⊢ N ∈ ℤ ∧ A ∈ ℤ ∧ B ∈ ℤ → N ∥ A → N ∥ A ⁢ B
4
2 3
syl3an1
⊢ N ∈ ℕ ∧ A ∈ ℤ ∧ B ∈ ℤ → N ∥ A → N ∥ A ⁢ B
5
dvdsmod0
⊢ N ∈ ℕ ∧ N ∥ A ⁢ B → A ⁢ B mod N = 0
6
1 4 5
syl6an
⊢ N ∈ ℕ ∧ A ∈ ℤ ∧ B ∈ ℤ → N ∥ A → A ⁢ B mod N = 0