This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Reciprocals
mulcan
Metamath Proof Explorer
Description: Cancellation law for multiplication (full theorem form). Theorem I.7 of
Apostol p. 18. (Contributed by NM , 29-Jan-1995) (Revised by Mario
Carneiro , 27-May-2016)
Ref
Expression
Assertion
mulcan
⊢ A ∈ ℂ ∧ B ∈ ℂ ∧ C ∈ ℂ ∧ C ≠ 0 → C ⁢ A = C ⁢ B ↔ A = B
Proof
Step
Hyp
Ref
Expression
1
simp1
⊢ A ∈ ℂ ∧ B ∈ ℂ ∧ C ∈ ℂ ∧ C ≠ 0 → A ∈ ℂ
2
simp2
⊢ A ∈ ℂ ∧ B ∈ ℂ ∧ C ∈ ℂ ∧ C ≠ 0 → B ∈ ℂ
3
simp3l
⊢ A ∈ ℂ ∧ B ∈ ℂ ∧ C ∈ ℂ ∧ C ≠ 0 → C ∈ ℂ
4
simp3r
⊢ A ∈ ℂ ∧ B ∈ ℂ ∧ C ∈ ℂ ∧ C ≠ 0 → C ≠ 0
5
1 2 3 4
mulcand
⊢ A ∈ ℂ ∧ B ∈ ℂ ∧ C ∈ ℂ ∧ C ≠ 0 → C ⁢ A = C ⁢ B ↔ A = B