This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem mpteq2dv

Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypothesis mpteq2dv.1 φ B = C
Assertion mpteq2dv φ x A B = x A C

Proof

Step Hyp Ref Expression
1 mpteq2dv.1 φ B = C
2 1 adantr φ x A B = C
3 2 mpteq2dva φ x A B = x A C