This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem mpoxeldm

Description: If there is an element of the value of an operation given by a maps-to rule, then the first argument is an element of the first component of the domain and the second argument is an element of the second component of the domain depending on the first argument. (Contributed by AV, 25-Oct-2020)

Ref Expression
Hypothesis mpoxeldm.f F = x C , y D R
Assertion mpoxeldm N X F Y X C Y X / x D

Proof

Step Hyp Ref Expression
1 mpoxeldm.f F = x C , y D R
2 1 dmmpossx dom F x C x × D
3 elfvdm N F X Y X Y dom F
4 df-ov X F Y = F X Y
5 3 4 eleq2s N X F Y X Y dom F
6 2 5 sselid N X F Y X Y x C x × D
7 nfcsb1v _ x X / x D
8 csbeq1a x = X D = X / x D
9 7 8 opeliunxp2f X Y x C x × D X C Y X / x D
10 6 9 sylib N X F Y X C Y X / x D