This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Definition and basic properties
mplelf
Metamath Proof Explorer
Description: A polynomial is defined as a function on the coefficients. (Contributed by Mario Carneiro , 7-Jan-2015) (Revised by Mario Carneiro , 2-Oct-2015)
Ref
Expression
Hypotheses
mplelf.p
⊢ P = I mPoly R
mplelf.k
⊢ K = Base R
mplelf.b
⊢ B = Base P
mplelf.d
⊢ D = f ∈ ℕ 0 I | f -1 ℕ ∈ Fin
mplelf.x
⊢ φ → X ∈ B
Assertion
mplelf
⊢ φ → X : D ⟶ K
Proof
Step
Hyp
Ref
Expression
1
mplelf.p
⊢ P = I mPoly R
2
mplelf.k
⊢ K = Base R
3
mplelf.b
⊢ B = Base P
4
mplelf.d
⊢ D = f ∈ ℕ 0 I | f -1 ℕ ∈ Fin
5
mplelf.x
⊢ φ → X ∈ B
6
eqid
⊢ I mPwSer R = I mPwSer R
7
eqid
⊢ Base I mPwSer R = Base I mPwSer R
8
1 6 3 7
mplbasss
⊢ B ⊆ Base I mPwSer R
9
8 5
sselid
⊢ φ → X ∈ Base I mPwSer R
10
6 2 4 7 9
psrelbas
⊢ φ → X : D ⟶ K