This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndtcbas.c | ||
| mndtcbas.m | |||
| mndtcbas.b | |||
| mndtchom.x | |||
| mndtchom.y | |||
| mndtcco.z | |||
| mndtcco.o | |||
| mndtcco2.o2 | No typesetting found for |- ( ph -> .o. = ( <. X , Y >. .x. Z ) ) with typecode |- | ||
| Assertion | mndtcco2 | Could not format assertion : No typesetting found for |- ( ph -> ( G .o. F ) = ( G ( +g ` M ) F ) ) with typecode |- |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndtcbas.c | ||
| 2 | mndtcbas.m | ||
| 3 | mndtcbas.b | ||
| 4 | mndtchom.x | ||
| 5 | mndtchom.y | ||
| 6 | mndtcco.z | ||
| 7 | mndtcco.o | ||
| 8 | mndtcco2.o2 | Could not format ( ph -> .o. = ( <. X , Y >. .x. Z ) ) : No typesetting found for |- ( ph -> .o. = ( <. X , Y >. .x. Z ) ) with typecode |- | |
| 9 | 1 2 3 4 5 6 7 | mndtcco | |
| 10 | 8 9 | eqtrd | Could not format ( ph -> .o. = ( +g ` M ) ) : No typesetting found for |- ( ph -> .o. = ( +g ` M ) ) with typecode |- |
| 11 | 10 | oveqd | Could not format ( ph -> ( G .o. F ) = ( G ( +g ` M ) F ) ) : No typesetting found for |- ( ph -> ( G .o. F ) = ( G ( +g ` M ) F ) ) with typecode |- |