This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem mndoisexid

Description: A monoid has an identity element. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.)

Ref Expression
Assertion mndoisexid G MndOp G ExId

Proof

Step Hyp Ref Expression
1 elinel2 G SemiGrp ExId G ExId
2 df-mndo MndOp = SemiGrp ExId
3 1 2 eleq2s G MndOp G ExId