This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC TOPOLOGY
Metric spaces
The uniform structure generated by a metric
metustrel
Metamath Proof Explorer
Description: Elements of the filter base generated by the metric D are relations.
(Contributed by Thierry Arnoux , 28-Nov-2017) (Revised by Thierry
Arnoux , 11-Feb-2018)
Ref
Expression
Hypothesis
metust.1
⊢ F = ran ⁡ a ∈ ℝ + ⟼ D -1 0 a
Assertion
metustrel
⊢ D ∈ PsMet ⁡ X ∧ A ∈ F → Rel ⁡ A
Proof
Step
Hyp
Ref
Expression
1
metust.1
⊢ F = ran ⁡ a ∈ ℝ + ⟼ D -1 0 a
2
1
metustss
⊢ D ∈ PsMet ⁡ X ∧ A ∈ F → A ⊆ X × X
3
xpss
⊢ X × X ⊆ V × V
4
2 3
sstrdi
⊢ D ∈ PsMet ⁡ X ∧ A ∈ F → A ⊆ V × V
5
df-rel
⊢ Rel ⁡ A ↔ A ⊆ V × V
6
4 5
sylibr
⊢ D ∈ PsMet ⁡ X ∧ A ∈ F → Rel ⁡ A