This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: According to the definition in Weierstrass p. 272, the determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring. So for any multilinear (mdetuni.li and mdetuni.sc), alternating (mdetuni.al) and normalized (mdetuni.no) function D (mdetuni.ff) from the algebra of square matrices (mdetuni.a) to their underlying commutative ring (mdetuni.cr), the function value of this function D for a matrix F (mdetuni.f) is the determinant of this matrix. (Contributed by Stefan O'Rear, 15-Jul-2018) (Revised by Alexander van der Vekens, 8-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetuni.a | ||
| mdetuni.b | |||
| mdetuni.k | |||
| mdetuni.0g | |||
| mdetuni.1r | |||
| mdetuni.pg | |||
| mdetuni.tg | |||
| mdetuni.n | |||
| mdetuni.r | |||
| mdetuni.ff | |||
| mdetuni.al | |||
| mdetuni.li | |||
| mdetuni.sc | |||
| mdetuni.e | |||
| mdetuni.cr | |||
| mdetuni.f | |||
| mdetuni.no | |||
| Assertion | mdetuni |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetuni.a | ||
| 2 | mdetuni.b | ||
| 3 | mdetuni.k | ||
| 4 | mdetuni.0g | ||
| 5 | mdetuni.1r | ||
| 6 | mdetuni.pg | ||
| 7 | mdetuni.tg | ||
| 8 | mdetuni.n | ||
| 9 | mdetuni.r | ||
| 10 | mdetuni.ff | ||
| 11 | mdetuni.al | ||
| 12 | mdetuni.li | ||
| 13 | mdetuni.sc | ||
| 14 | mdetuni.e | ||
| 15 | mdetuni.cr | ||
| 16 | mdetuni.f | ||
| 17 | mdetuni.no | ||
| 18 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | mdetuni0 | |
| 19 | 17 | oveq1d | |
| 20 | 14 1 2 3 | mdetcl | |
| 21 | 15 16 20 | syl2anc | |
| 22 | 3 7 5 | ringlidm | |
| 23 | 9 21 22 | syl2anc | |
| 24 | 18 19 23 | 3eqtrd |