This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: A matrix is a function. (Contributed by Stefan O'Rear, 11-Sep-2015)
|
|
Ref |
Expression |
|
Hypotheses |
matbas2.a |
|
|
|
matbas2.k |
|
|
|
matbas2i.b |
|
|
Assertion |
matbas2i |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
matbas2.a |
|
| 2 |
|
matbas2.k |
|
| 3 |
|
matbas2i.b |
|
| 4 |
|
id |
|
| 5 |
4 3
|
eleqtrdi |
|
| 6 |
1 3
|
matrcl |
|
| 7 |
1 2
|
matbas2 |
|
| 8 |
6 7
|
syl |
|
| 9 |
5 8
|
eleqtrrd |
|