This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Explicit bijection between a set and its singleton functions.
(Contributed by Stefan O'Rear, 21-Mar-2015)
|
|
Ref |
Expression |
|
Hypotheses |
mapsncnv.s |
|
|
|
mapsncnv.b |
|
|
|
mapsncnv.x |
|
|
|
mapsncnv.f |
|
|
Assertion |
mapsnf1o2 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapsncnv.s |
|
| 2 |
|
mapsncnv.b |
|
| 3 |
|
mapsncnv.x |
|
| 4 |
|
mapsncnv.f |
|
| 5 |
|
fvex |
|
| 6 |
5 4
|
fnmpti |
|
| 7 |
|
snex |
|
| 8 |
1 7
|
eqeltri |
|
| 9 |
|
snex |
|
| 10 |
8 9
|
xpex |
|
| 11 |
1 2 3 4
|
mapsncnv |
|
| 12 |
10 11
|
fnmpti |
|
| 13 |
|
dff1o4 |
|
| 14 |
6 12 13
|
mpbir2an |
|