This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
The mapping operation
mapdm0
Metamath Proof Explorer
Description: The empty set is the only map with empty domain. (Contributed by Glauco
Siliprandi , 11-Oct-2020) (Proof shortened by Thierry Arnoux , 3-Dec-2021)
Ref
Expression
Assertion
mapdm0
⊢ B ∈ V → B ∅ = ∅
Proof
Step
Hyp
Ref
Expression
1
0ex
⊢ ∅ ∈ V
2
elmapg
⊢ B ∈ V ∧ ∅ ∈ V → f ∈ B ∅ ↔ f : ∅ ⟶ B
3
1 2
mpan2
⊢ B ∈ V → f ∈ B ∅ ↔ f : ∅ ⟶ B
4
f0bi
⊢ f : ∅ ⟶ B ↔ f = ∅
5
3 4
bitrdi
⊢ B ∈ V → f ∈ B ∅ ↔ f = ∅
6
velsn
⊢ f ∈ ∅ ↔ f = ∅
7
5 6
bitr4di
⊢ B ∈ V → f ∈ B ∅ ↔ f ∈ ∅
8
7
eqrdv
⊢ B ∈ V → B ∅ = ∅