This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem luklem5

Description: Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion luklem5 φ ψ φ

Proof

Step Hyp Ref Expression
1 luklem3 φ ¬ φ φ φ ψ φ
2 luklem4 ¬ φ φ φ ψ φ ψ φ
3 1 2 luklem1 φ ψ φ