This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Construction and axiomatization of real and complex numbers
Dedekind-cut construction of real and complex numbers
ltpiord
Metamath Proof Explorer
Description: Positive integer 'less than' in terms of ordinal membership. (Contributed by NM , 6-Feb-1996) (Revised by Mario Carneiro , 28-Apr-2015)
(New usage is discouraged.)
Ref
Expression
Assertion
ltpiord
⊢ A ∈ 𝑵 ∧ B ∈ 𝑵 → A < 𝑵 B ↔ A ∈ B
Proof
Step
Hyp
Ref
Expression
1
df-lti
⊢ < 𝑵 = E ∩ 𝑵 × 𝑵
2
1
breqi
⊢ A < 𝑵 B ↔ A E ∩ 𝑵 × 𝑵 B
3
brinxp
⊢ A ∈ 𝑵 ∧ B ∈ 𝑵 → A E B ↔ A E ∩ 𝑵 × 𝑵 B
4
epelg
⊢ B ∈ 𝑵 → A E B ↔ A ∈ B
5
4
adantl
⊢ A ∈ 𝑵 ∧ B ∈ 𝑵 → A E B ↔ A ∈ B
6
3 5
bitr3d
⊢ A ∈ 𝑵 ∧ B ∈ 𝑵 → A E ∩ 𝑵 × 𝑵 B ↔ A ∈ B
7
2 6
bitrid
⊢ A ∈ 𝑵 ∧ B ∈ 𝑵 → A < 𝑵 B ↔ A ∈ B