This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Order sets
Positive reals (as a subset of complex numbers)
ltmul2d
Metamath Proof Explorer
Description: Multiplication of both sides of 'less than' by a positive number.
Theorem I.19 of Apostol p. 20. (Contributed by Mario Carneiro , 28-May-2016)
Ref
Expression
Hypotheses
ltmul1d.1
⊢ φ → A ∈ ℝ
ltmul1d.2
⊢ φ → B ∈ ℝ
ltmul1d.3
⊢ φ → C ∈ ℝ +
Assertion
ltmul2d
⊢ φ → A < B ↔ C ⁢ A < C ⁢ B
Proof
Step
Hyp
Ref
Expression
1
ltmul1d.1
⊢ φ → A ∈ ℝ
2
ltmul1d.2
⊢ φ → B ∈ ℝ
3
ltmul1d.3
⊢ φ → C ∈ ℝ +
4
3
rpregt0d
⊢ φ → C ∈ ℝ ∧ 0 < C
5
ltmul2
⊢ A ∈ ℝ ∧ B ∈ ℝ ∧ C ∈ ℝ ∧ 0 < C → A < B ↔ C ⁢ A < C ⁢ B
6
1 2 4 5
syl3anc
⊢ φ → A < B ↔ C ⁢ A < C ⁢ B