This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Ordering on reals (cont.)
lt2add
Metamath Proof Explorer
Description: Adding both sides of two 'less than' relations. Theorem I.25 of Apostol
p. 20. (Contributed by NM , 15-Aug-1999) (Proof shortened by Mario
Carneiro , 27-May-2016)
Ref
Expression
Assertion
lt2add
⊢ A ∈ ℝ ∧ B ∈ ℝ ∧ C ∈ ℝ ∧ D ∈ ℝ → A < C ∧ B < D → A + B < C + D
Proof
Step
Hyp
Ref
Expression
1
ltle
⊢ A ∈ ℝ ∧ C ∈ ℝ → A < C → A ≤ C
2
1
ad2ant2r
⊢ A ∈ ℝ ∧ B ∈ ℝ ∧ C ∈ ℝ ∧ D ∈ ℝ → A < C → A ≤ C
3
leltadd
⊢ A ∈ ℝ ∧ B ∈ ℝ ∧ C ∈ ℝ ∧ D ∈ ℝ → A ≤ C ∧ B < D → A + B < C + D
4
2 3
syland
⊢ A ∈ ℝ ∧ B ∈ ℝ ∧ C ∈ ℝ ∧ D ∈ ℝ → A < C ∧ B < D → A + B < C + D