This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: A submodule is a module. (Contributed by Stefan O'Rear, 12-Dec-2014)
|
|
Ref |
Expression |
|
Hypotheses |
lsslss.x |
|
|
|
lsslss.s |
|
|
Assertion |
lsslmod |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsslss.x |
|
| 2 |
|
lsslss.s |
|
| 3 |
|
eqid |
|
| 4 |
1 3 2
|
islss3 |
|
| 5 |
4
|
simplbda |
|