This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem lnfnfi

Description: A linear Hilbert space functional is a functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypothesis lnfnl.1 T LinFn
Assertion lnfnfi T :

Proof

Step Hyp Ref Expression
1 lnfnl.1 T LinFn
2 lnfnf T LinFn T :
3 1 2 ax-mp T :