This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC STRUCTURES
Extensible structures
Slot definitions
lmodstr
Metamath Proof Explorer
Description: A constructed left module or left vector space is a structure.
(Contributed by Mario Carneiro , 1-Oct-2013) (Revised by Mario
Carneiro , 29-Aug-2015)
Ref
Expression
Hypothesis
lmodstr.w
⊢ W = Base ndx B + ndx + ˙ Scalar ⁡ ndx F ∪ ⋅ ndx · ˙
Assertion
lmodstr
⊢ W Struct 1 6
Proof
Step
Hyp
Ref
Expression
1
lmodstr.w
⊢ W = Base ndx B + ndx + ˙ Scalar ⁡ ndx F ∪ ⋅ ndx · ˙
2
1nn
⊢ 1 ∈ ℕ
3
basendx
⊢ Base ndx = 1
4
1lt2
⊢ 1 < 2
5
2nn
⊢ 2 ∈ ℕ
6
plusgndx
⊢ + ndx = 2
7
2lt5
⊢ 2 < 5
8
5nn
⊢ 5 ∈ ℕ
9
scandx
⊢ Scalar ⁡ ndx = 5
10
2 3 4 5 6 7 8 9
strle3
⊢ Base ndx B + ndx + ˙ Scalar ⁡ ndx F Struct 1 5
11
6nn
⊢ 6 ∈ ℕ
12
vscandx
⊢ ⋅ ndx = 6
13
11 12
strle1
⊢ ⋅ ndx · ˙ Struct 6 6
14
5lt6
⊢ 5 < 6
15
10 13 14
strleun
⊢ Base ndx B + ndx + ˙ Scalar ⁡ ndx F ∪ ⋅ ndx · ˙ Struct 1 6
16
1 15
eqbrtri
⊢ W Struct 1 6