This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem lenlti

Description: 'Less than or equal to' in terms of 'less than'. (Contributed by NM, 24-May-1999)

Ref Expression
Hypotheses lt.1 A
lt.2 B
Assertion lenlti A B ¬ B < A

Proof

Step Hyp Ref Expression
1 lt.1 A
2 lt.2 B
3 lenlt A B A B ¬ B < A
4 1 2 3 mp2an A B ¬ B < A