This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem leidd

Description: 'Less than or equal to' is reflexive. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis leidd.1 φ A
Assertion leidd φ A A

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 leid A A A
3 1 2 syl φ A A