This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: An idiom to express that a lattice element differs from two others.
(Contributed by NM, 19-Jul-2012)
|
|
Ref |
Expression |
|
Hypotheses |
latlej.b |
|
|
|
latlej.l |
|
|
|
latlej.j |
|
|
Assertion |
latnlej1l |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
latlej.b |
|
| 2 |
|
latlej.l |
|
| 3 |
|
latlej.j |
|
| 4 |
1 2 3
|
latnlej |
|
| 5 |
4
|
simpld |
|