This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ixpeq2dv

Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016)

Ref Expression
Hypothesis ixpeq2dv.1 φ B = C
Assertion ixpeq2dv φ x A B = x A C

Proof

Step Hyp Ref Expression
1 ixpeq2dv.1 φ B = C
2 1 adantr φ x A B = C
3 2 ixpeq2dva φ x A B = x A C