This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Walks, paths and cycles
Walks as words
iswspthn
Metamath Proof Explorer
Description: An element of the set of simple paths of a fixed length as word.
(Contributed by Alexander van der Vekens , 1-Mar-2018) (Revised by AV , 11-May-2021)
Ref
Expression
Assertion
iswspthn
⊢ W ∈ N WSPathsN G ↔ W ∈ N WWalksN G ∧ ∃ f f SPaths ⁡ G W
Proof
Step
Hyp
Ref
Expression
1
breq2
⊢ w = W → f SPaths ⁡ G w ↔ f SPaths ⁡ G W
2
1
exbidv
⊢ w = W → ∃ f f SPaths ⁡ G w ↔ ∃ f f SPaths ⁡ G W
3
wspthsn
⊢ N WSPathsN G = w ∈ N WWalksN G | ∃ f f SPaths ⁡ G w
4
2 3
elrab2
⊢ W ∈ N WSPathsN G ↔ W ∈ N WWalksN G ∧ ∃ f f SPaths ⁡ G W