This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem iswrddm0

Description: A function with empty domain is a word. (Contributed by AV, 13-Oct-2018)

Ref Expression
Assertion iswrddm0 W : S W Word S

Proof

Step Hyp Ref Expression
1 fzo0 0 ..^ 0 =
2 1 feq2i W : 0 ..^ 0 S W : S
3 iswrdi W : 0 ..^ 0 S W Word S
4 2 3 sylbir W : S W Word S