This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite sums
isum
Metamath Proof Explorer
Description: Series sum with an upper integer index set (i.e. an infinite series).
(Contributed by Mario Carneiro , 15-Jul-2013) (Revised by Mario
Carneiro , 7-Apr-2014)
Ref
Expression
Hypotheses
zsum.1
⊢ Z = ℤ ≥ M
zsum.2
⊢ φ → M ∈ ℤ
isum.3
⊢ φ ∧ k ∈ Z → F ⁡ k = B
isum.4
⊢ φ ∧ k ∈ Z → B ∈ ℂ
Assertion
isum
⊢ φ → ∑ k ∈ Z B = ⇝ ⁡ seq M + F
Proof
Step
Hyp
Ref
Expression
1
zsum.1
⊢ Z = ℤ ≥ M
2
zsum.2
⊢ φ → M ∈ ℤ
3
isum.3
⊢ φ ∧ k ∈ Z → F ⁡ k = B
4
isum.4
⊢ φ ∧ k ∈ Z → B ∈ ℂ
5
ssidd
⊢ φ → Z ⊆ Z
6
iftrue
⊢ k ∈ Z → if k ∈ Z B 0 = B
7
6
adantl
⊢ φ ∧ k ∈ Z → if k ∈ Z B 0 = B
8
3 7
eqtr4d
⊢ φ ∧ k ∈ Z → F ⁡ k = if k ∈ Z B 0
9
1 2 5 8 4
zsum
⊢ φ → ∑ k ∈ Z B = ⇝ ⁡ seq M + F