This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem istotbnd2

Description: The predicate "is a totally bounded metric space." (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion istotbnd2 M Met X M TotBnd X d + v Fin v = X b v x X b = x ball M d

Proof

Step Hyp Ref Expression
1 istotbnd M TotBnd X M Met X d + v Fin v = X b v x X b = x ball M d
2 1 baib M Met X M TotBnd X d + v Fin v = X b v x X b = x ball M d