This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC TOPOLOGY
Topology
Topological spaces
Topologies
istop2g
Metamath Proof Explorer
Description: Express the predicate " J is a topology" using nonempty finite
intersections instead of binary intersections as in istopg .
(Contributed by NM , 19-Jul-2006)
Ref
Expression
Assertion
istop2g
⊢ J ∈ A → J ∈ Top ↔ ∀ x x ⊆ J → ⋃ x ∈ J ∧ ∀ x x ⊆ J ∧ x ≠ ∅ ∧ x ∈ Fin → ⋂ x ∈ J
Proof
Step
Hyp
Ref
Expression
1
istopg
⊢ J ∈ A → J ∈ Top ↔ ∀ x x ⊆ J → ⋃ x ∈ J ∧ ∀ x ∈ J ∀ y ∈ J x ∩ y ∈ J
2
fiint
⊢ ∀ x ∈ J ∀ y ∈ J x ∩ y ∈ J ↔ ∀ x x ⊆ J ∧ x ≠ ∅ ∧ x ∈ Fin → ⋂ x ∈ J
3
2
anbi2i
⊢ ∀ x x ⊆ J → ⋃ x ∈ J ∧ ∀ x ∈ J ∀ y ∈ J x ∩ y ∈ J ↔ ∀ x x ⊆ J → ⋃ x ∈ J ∧ ∀ x x ⊆ J ∧ x ≠ ∅ ∧ x ∈ Fin → ⋂ x ∈ J
4
1 3
bitrdi
⊢ J ∈ A → J ∈ Top ↔ ∀ x x ⊆ J → ⋃ x ∈ J ∧ ∀ x x ⊆ J ∧ x ≠ ∅ ∧ x ∈ Fin → ⋂ x ∈ J