This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
isfin3-2
Metamath Proof Explorer
Description: Weakly Dedekind-infinite sets are exactly those which can be mapped onto
_om . (Contributed by Stefan O'Rear , 6-Nov-2014) (Proof shortened by Mario Carneiro , 17-May-2015)
Ref
Expression
Assertion
isfin3-2
⊢ A ∈ V → A ∈ Fin III ↔ ¬ ω ≼ * A
Proof
Step
Hyp
Ref
Expression
1
isfin32i
⊢ A ∈ Fin III → ¬ ω ≼ * A
2
isf33lem
⊢ Fin III = g | ∀ a ∈ 𝒫 g ω ∀ x ∈ ω a ⁡ suc ⁡ x ⊆ a ⁡ x → ⋂ ran ⁡ a ∈ ran ⁡ a
3
2
isf32lem12
⊢ A ∈ V → ¬ ω ≼ * A → A ∈ Fin III
4
1 3
impbid2
⊢ A ∈ V → A ∈ Fin III ↔ ¬ ω ≼ * A