This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Definite description binder (inverted iota)
iotassuni
Metamath Proof Explorer
Description: The iota class is a subset of the union of all elements satisfying
ph . (Contributed by Mario Carneiro , 24-Dec-2016) Remove
dependency on ax-10 , ax-11 , ax-12 . (Revised by SN , 6-Nov-2024)
Ref
Expression
Assertion
iotassuni
⊢ ι x | φ ⊆ ⋃ x | φ
Proof
Step
Hyp
Ref
Expression
1
iotauni2
⊢ ∃ y x | φ = y → ι x | φ = ⋃ x | φ
2
eqimss
⊢ ι x | φ = ⋃ x | φ → ι x | φ ⊆ ⋃ x | φ
3
1 2
syl
⊢ ∃ y x | φ = y → ι x | φ ⊆ ⋃ x | φ
4
iotanul2
⊢ ¬ ∃ y x | φ = y → ι x | φ = ∅
5
0ss
⊢ ∅ ⊆ ⋃ x | φ
6
4 5
eqsstrdi
⊢ ¬ ∃ y x | φ = y → ι x | φ ⊆ ⋃ x | φ
7
3 6
pm2.61i
⊢ ι x | φ ⊆ ⋃ x | φ