This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Real intervals
iocleub
Metamath Proof Explorer
Description: An element of a left-open right-closed interval is smaller than or equal
to its upper bound. (Contributed by Glauco Siliprandi , 11-Dec-2019)
Ref
Expression
Assertion
iocleub
⊢ A ∈ ℝ * ∧ B ∈ ℝ * ∧ C ∈ A B → C ≤ B
Proof
Step
Hyp
Ref
Expression
1
elioc1
⊢ A ∈ ℝ * ∧ B ∈ ℝ * → C ∈ A B ↔ C ∈ ℝ * ∧ A < C ∧ C ≤ B
2
simp3
⊢ C ∈ ℝ * ∧ A < C ∧ C ≤ B → C ≤ B
3
1 2
biimtrdi
⊢ A ∈ ℝ * ∧ B ∈ ℝ * → C ∈ A B → C ≤ B
4
3
3impia
⊢ A ∈ ℝ * ∧ B ∈ ℝ * ∧ C ∈ A B → C ≤ B