This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
inundif
Metamath Proof Explorer
Description: The intersection and class difference of a class with another class
unite to give the original class. (Contributed by Paul Chapman , 5-Jun-2009) (Proof shortened by Andrew Salmon , 26-Jun-2011)
Ref
Expression
Assertion
inundif
⊢ A ∩ B ∪ A ∖ B = A
Proof
Step
Hyp
Ref
Expression
1
elin
⊢ x ∈ A ∩ B ↔ x ∈ A ∧ x ∈ B
2
eldif
⊢ x ∈ A ∖ B ↔ x ∈ A ∧ ¬ x ∈ B
3
1 2
orbi12i
⊢ x ∈ A ∩ B ∨ x ∈ A ∖ B ↔ x ∈ A ∧ x ∈ B ∨ x ∈ A ∧ ¬ x ∈ B
4
pm4.42
⊢ x ∈ A ↔ x ∈ A ∧ x ∈ B ∨ x ∈ A ∧ ¬ x ∈ B
5
3 4
bitr4i
⊢ x ∈ A ∩ B ∨ x ∈ A ∖ B ↔ x ∈ A
6
5
uneqri
⊢ A ∩ B ∪ A ∖ B = A