This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The internal operation for a set is the trivial operation iff the set is a singleton. Formerly part of proof of ring1zr . (Contributed by FL, 13-Feb-2010) (Revised by AV, 23-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intopsn | Could not format assertion : No typesetting found for |- ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> ( B = { Z } <-> .o. = { <. <. Z , Z >. , Z >. } ) ) with typecode |- |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | Could not format ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> .o. : ( B X. B ) --> B ) : No typesetting found for |- ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> .o. : ( B X. B ) --> B ) with typecode |- | |
| 2 | id | ||
| 3 | 2 | sqxpeqd | |
| 4 | 3 2 | feq23d | Could not format ( B = { Z } -> ( .o. : ( B X. B ) --> B <-> .o. : ( { Z } X. { Z } ) --> { Z } ) ) : No typesetting found for |- ( B = { Z } -> ( .o. : ( B X. B ) --> B <-> .o. : ( { Z } X. { Z } ) --> { Z } ) ) with typecode |- |
| 5 | 1 4 | syl5ibcom | Could not format ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> ( B = { Z } -> .o. : ( { Z } X. { Z } ) --> { Z } ) ) : No typesetting found for |- ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> ( B = { Z } -> .o. : ( { Z } X. { Z } ) --> { Z } ) ) with typecode |- |
| 6 | fdm | Could not format ( .o. : ( B X. B ) --> B -> dom .o. = ( B X. B ) ) : No typesetting found for |- ( .o. : ( B X. B ) --> B -> dom .o. = ( B X. B ) ) with typecode |- | |
| 7 | 6 | eqcomd | Could not format ( .o. : ( B X. B ) --> B -> ( B X. B ) = dom .o. ) : No typesetting found for |- ( .o. : ( B X. B ) --> B -> ( B X. B ) = dom .o. ) with typecode |- |
| 8 | 7 | adantr | Could not format ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> ( B X. B ) = dom .o. ) : No typesetting found for |- ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> ( B X. B ) = dom .o. ) with typecode |- |
| 9 | fdm | Could not format ( .o. : ( { Z } X. { Z } ) --> { Z } -> dom .o. = ( { Z } X. { Z } ) ) : No typesetting found for |- ( .o. : ( { Z } X. { Z } ) --> { Z } -> dom .o. = ( { Z } X. { Z } ) ) with typecode |- | |
| 10 | 9 | eqeq2d | Could not format ( .o. : ( { Z } X. { Z } ) --> { Z } -> ( ( B X. B ) = dom .o. <-> ( B X. B ) = ( { Z } X. { Z } ) ) ) : No typesetting found for |- ( .o. : ( { Z } X. { Z } ) --> { Z } -> ( ( B X. B ) = dom .o. <-> ( B X. B ) = ( { Z } X. { Z } ) ) ) with typecode |- |
| 11 | 8 10 | syl5ibcom | Could not format ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> ( .o. : ( { Z } X. { Z } ) --> { Z } -> ( B X. B ) = ( { Z } X. { Z } ) ) ) : No typesetting found for |- ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> ( .o. : ( { Z } X. { Z } ) --> { Z } -> ( B X. B ) = ( { Z } X. { Z } ) ) ) with typecode |- |
| 12 | xpid11 | ||
| 13 | 11 12 | imbitrdi | Could not format ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> ( .o. : ( { Z } X. { Z } ) --> { Z } -> B = { Z } ) ) : No typesetting found for |- ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> ( .o. : ( { Z } X. { Z } ) --> { Z } -> B = { Z } ) ) with typecode |- |
| 14 | 5 13 | impbid | Could not format ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> ( B = { Z } <-> .o. : ( { Z } X. { Z } ) --> { Z } ) ) : No typesetting found for |- ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> ( B = { Z } <-> .o. : ( { Z } X. { Z } ) --> { Z } ) ) with typecode |- |
| 15 | simpr | Could not format ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> Z e. B ) : No typesetting found for |- ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> Z e. B ) with typecode |- | |
| 16 | xpsng | ||
| 17 | 15 16 | sylancom | Could not format ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> ( { Z } X. { Z } ) = { <. Z , Z >. } ) : No typesetting found for |- ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> ( { Z } X. { Z } ) = { <. Z , Z >. } ) with typecode |- |
| 18 | 17 | feq2d | Could not format ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> ( .o. : ( { Z } X. { Z } ) --> { Z } <-> .o. : { <. Z , Z >. } --> { Z } ) ) : No typesetting found for |- ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> ( .o. : ( { Z } X. { Z } ) --> { Z } <-> .o. : { <. Z , Z >. } --> { Z } ) ) with typecode |- |
| 19 | opex | ||
| 20 | fsng | Could not format ( ( <. Z , Z >. e. _V /\ Z e. B ) -> ( .o. : { <. Z , Z >. } --> { Z } <-> .o. = { <. <. Z , Z >. , Z >. } ) ) : No typesetting found for |- ( ( <. Z , Z >. e. _V /\ Z e. B ) -> ( .o. : { <. Z , Z >. } --> { Z } <-> .o. = { <. <. Z , Z >. , Z >. } ) ) with typecode |- | |
| 21 | 19 20 | mpan | Could not format ( Z e. B -> ( .o. : { <. Z , Z >. } --> { Z } <-> .o. = { <. <. Z , Z >. , Z >. } ) ) : No typesetting found for |- ( Z e. B -> ( .o. : { <. Z , Z >. } --> { Z } <-> .o. = { <. <. Z , Z >. , Z >. } ) ) with typecode |- |
| 22 | 21 | adantl | Could not format ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> ( .o. : { <. Z , Z >. } --> { Z } <-> .o. = { <. <. Z , Z >. , Z >. } ) ) : No typesetting found for |- ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> ( .o. : { <. Z , Z >. } --> { Z } <-> .o. = { <. <. Z , Z >. , Z >. } ) ) with typecode |- |
| 23 | 14 18 22 | 3bitrd | Could not format ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> ( B = { Z } <-> .o. = { <. <. Z , Z >. , Z >. } ) ) : No typesetting found for |- ( ( .o. : ( B X. B ) --> B /\ Z e. B ) -> ( B = { Z } <-> .o. = { <. <. Z , Z >. , Z >. } ) ) with typecode |- |