This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Finite multiplication of numbers and finite multiplication of functions
infrglb
Metamath Proof Explorer
Description: The infimum of a nonempty bounded set of reals is the greatest lower
bound. (Contributed by Glauco Siliprandi , 29-Jun-2017) (Revised by AV , 15-Sep-2020)
Ref
Expression
Assertion
infrglb
⊢ A ⊆ ℝ ∧ A ≠ ∅ ∧ ∃ x ∈ ℝ ∀ y ∈ A x ≤ y ∧ B ∈ ℝ → inf A ℝ < < B ↔ ∃ z ∈ A z < B
Proof
Step
Hyp
Ref
Expression
1
ltso
⊢ < Or ℝ
2
1
a1i
⊢ A ⊆ ℝ ∧ A ≠ ∅ ∧ ∃ x ∈ ℝ ∀ y ∈ A x ≤ y → < Or ℝ
3
infm3
⊢ A ⊆ ℝ ∧ A ≠ ∅ ∧ ∃ x ∈ ℝ ∀ y ∈ A x ≤ y → ∃ x ∈ ℝ ∀ y ∈ A ¬ y < x ∧ ∀ y ∈ ℝ x < y → ∃ z ∈ A z < y
4
simp1
⊢ A ⊆ ℝ ∧ A ≠ ∅ ∧ ∃ x ∈ ℝ ∀ y ∈ A x ≤ y → A ⊆ ℝ
5
2 3 4
infglbb
⊢ A ⊆ ℝ ∧ A ≠ ∅ ∧ ∃ x ∈ ℝ ∀ y ∈ A x ≤ y ∧ B ∈ ℝ → inf A ℝ < < B ↔ ∃ z ∈ A z < B