This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC TOPOLOGY
Topology
Connectedness
indisconn
Metamath Proof Explorer
Description: The indiscrete topology (or trivial topology) on any set is connected.
(Contributed by FL , 5-Jan-2009) (Revised by Mario Carneiro , 14-Aug-2015)
Ref
Expression
Assertion
indisconn
⊢ ∅ A ∈ Conn
Proof
Step
Hyp
Ref
Expression
1
indistop
⊢ ∅ A ∈ Top
2
inss1
⊢ ∅ A ∩ Clsd ⁡ ∅ A ⊆ ∅ A
3
indislem
⊢ ∅ I ⁡ A = ∅ A
4
2 3
sseqtrri
⊢ ∅ A ∩ Clsd ⁡ ∅ A ⊆ ∅ I ⁡ A
5
indisuni
⊢ I ⁡ A = ⋃ ∅ A
6
5
isconn2
⊢ ∅ A ∈ Conn ↔ ∅ A ∈ Top ∧ ∅ A ∩ Clsd ⁡ ∅ A ⊆ ∅ I ⁡ A
7
1 4 6
mpbir2an
⊢ ∅ A ∈ Conn