This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
COMPLEX TOPOLOGICAL VECTOR SPACES (DEPRECATED)
Normed complex vector spaces
Induced metric of a normed complex vector space
imsxmet
Metamath Proof Explorer
Description: The induced metric of a normed complex vector space is an extended
metric space. (Contributed by Mario Carneiro , 10-Sep-2015)
(New usage is discouraged.)
Ref
Expression
Hypotheses
imsmet.1
⊢ X = BaseSet ⁡ U
imsmet.8
⊢ D = IndMet ⁡ U
Assertion
imsxmet
⊢ U ∈ NrmCVec → D ∈ ∞Met ⁡ X
Proof
Step
Hyp
Ref
Expression
1
imsmet.1
⊢ X = BaseSet ⁡ U
2
imsmet.8
⊢ D = IndMet ⁡ U
3
1 2
imsmet
⊢ U ∈ NrmCVec → D ∈ Met ⁡ X
4
metxmet
⊢ D ∈ Met ⁡ X → D ∈ ∞Met ⁡ X
5
3 4
syl
⊢ U ∈ NrmCVec → D ∈ ∞Met ⁡ X