This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem impbid21d

Description: Deduce an equivalence from two implications. (Contributed by Wolf Lammen, 12-May-2013)

Ref Expression
Hypotheses impbid21d.1 ψ χ θ
impbid21d.2 φ θ χ
Assertion impbid21d φ ψ χ θ

Proof

Step Hyp Ref Expression
1 impbid21d.1 ψ χ θ
2 impbid21d.2 φ θ χ
3 impbi χ θ θ χ χ θ
4 1 2 3 syl2imc φ ψ χ θ