This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem imdistanda

Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011)

Ref Expression
Hypothesis imdistanda.1 φ ψ χ θ
Assertion imdistanda φ ψ χ ψ θ

Proof

Step Hyp Ref Expression
1 imdistanda.1 φ ψ χ θ
2 1 ex φ ψ χ θ
3 2 imdistand φ ψ χ ψ θ