This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
imbrov2fvoveq
Metamath Proof Explorer
Description: Equality theorem for nested function and operation value in an
implication for a binary relation. Technical theorem to be used to
reduce the size of a significant number of proofs. (Contributed by AV , 17-Aug-2022)
Ref
Expression
Hypothesis
imbrov2fvoveq.1
⊢ X = Y → φ ↔ ψ
Assertion
imbrov2fvoveq
⊢ X = Y → φ → F ⁡ G ⁡ X · ˙ O R A ↔ ψ → F ⁡ G ⁡ Y · ˙ O R A
Proof
Step
Hyp
Ref
Expression
1
imbrov2fvoveq.1
⊢ X = Y → φ ↔ ψ
2
fveq2
⊢ X = Y → G ⁡ X = G ⁡ Y
3
2
fvoveq1d
⊢ X = Y → F ⁡ G ⁡ X · ˙ O = F ⁡ G ⁡ Y · ˙ O
4
3
breq1d
⊢ X = Y → F ⁡ G ⁡ X · ˙ O R A ↔ F ⁡ G ⁡ Y · ˙ O R A
5
1 4
imbi12d
⊢ X = Y → φ → F ⁡ G ⁡ X · ˙ O R A ↔ ψ → F ⁡ G ⁡ Y · ˙ O R A