This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Indexed union and intersection
iinin1
Metamath Proof Explorer
Description: Indexed intersection of intersection. Generalization of half of theorem
"Distributive laws" in Enderton p. 30. Use intiin to recover
Enderton's theorem. (Contributed by Mario Carneiro , 19-Mar-2015)
Ref
Expression
Assertion
iinin1
⊢ A ≠ ∅ → ⋂ x ∈ A C ∩ B = ⋂ x ∈ A C ∩ B
Proof
Step
Hyp
Ref
Expression
1
iinin2
⊢ A ≠ ∅ → ⋂ x ∈ A B ∩ C = B ∩ ⋂ x ∈ A C
2
incom
⊢ C ∩ B = B ∩ C
3
2
a1i
⊢ x ∈ A → C ∩ B = B ∩ C
4
3
iineq2i
⊢ ⋂ x ∈ A C ∩ B = ⋂ x ∈ A B ∩ C
5
incom
⊢ ⋂ x ∈ A C ∩ B = B ∩ ⋂ x ∈ A C
6
1 4 5
3eqtr4g
⊢ A ≠ ∅ → ⋂ x ∈ A C ∩ B = ⋂ x ∈ A C ∩ B