This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Order sets
Finite intervals of integers
ige3m2fz
Metamath Proof Explorer
Description: Membership of an integer greater than 2 decreased by 2 in a 1-based finite
set of sequential integers. (Contributed by Alexander van der Vekens , 14-Sep-2018)
Ref
Expression
Assertion
ige3m2fz
⊢ N ∈ ℤ ≥ 3 → N − 2 ∈ 1 … N
Proof
Step
Hyp
Ref
Expression
1
3m1e2
⊢ 3 − 1 = 2
2
1
eqcomi
⊢ 2 = 3 − 1
3
2
a1i
⊢ N ∈ ℤ ≥ 3 → 2 = 3 − 1
4
3
oveq2d
⊢ N ∈ ℤ ≥ 3 → N − 2 = N − 3 − 1
5
3nn
⊢ 3 ∈ ℕ
6
uzsubsubfz1
⊢ 3 ∈ ℕ ∧ N ∈ ℤ ≥ 3 → N − 3 − 1 ∈ 1 … N
7
5 6
mpan
⊢ N ∈ ℤ ≥ 3 → N − 3 − 1 ∈ 1 … N
8
4 7
eqeltrd
⊢ N ∈ ℤ ≥ 3 → N − 2 ∈ 1 … N