This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Order sets
Half-open integer ranges
ige2m2fzo
Metamath Proof Explorer
Description: Membership of an integer greater than 1 decreased by 2 in a half-open
range of nonnegative integers. (Contributed by Alexander van der Vekens , 3-Oct-2018)
Ref
Expression
Assertion
ige2m2fzo
⊢ N ∈ ℤ ≥ 2 → N − 2 ∈ 0 ..^ N − 1
Proof
Step
Hyp
Ref
Expression
1
eluzel2
⊢ N ∈ ℤ ≥ 2 → 2 ∈ ℤ
2
1z
⊢ 1 ∈ ℤ
3
1 2
jctir
⊢ N ∈ ℤ ≥ 2 → 2 ∈ ℤ ∧ 1 ∈ ℤ
4
1lt2
⊢ 1 < 2
5
4
jctr
⊢ N ∈ ℤ ≥ 2 → N ∈ ℤ ≥ 2 ∧ 1 < 2
6
eluzgtdifelfzo
⊢ 2 ∈ ℤ ∧ 1 ∈ ℤ → N ∈ ℤ ≥ 2 ∧ 1 < 2 → N − 2 ∈ 0 ..^ N − 1
7
3 5 6
sylc
⊢ N ∈ ℤ ≥ 2 → N − 2 ∈ 0 ..^ N − 1