This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The conditional operator for classes
iftrueb
Metamath Proof Explorer
Description: When the branches are not equal, an "if" condition results in the first
branch if and only if its condition is true. (Contributed by SN , 16-Oct-2025)
Ref
Expression
Assertion
iftrueb
⊢ A ≠ B → if φ A B = A ↔ φ
Proof
Step
Hyp
Ref
Expression
1
necom
⊢ A ≠ B ↔ B ≠ A
2
1
biimpi
⊢ A ≠ B → B ≠ A
3
iffalse
⊢ ¬ φ → if φ A B = B
4
3
neeq1d
⊢ ¬ φ → if φ A B ≠ A ↔ B ≠ A
5
2 4
syl5ibrcom
⊢ A ≠ B → ¬ φ → if φ A B ≠ A
6
5
necon4bd
⊢ A ≠ B → if φ A B = A → φ
7
iftrue
⊢ φ → if φ A B = A
8
6 7
impbid1
⊢ A ≠ B → if φ A B = A ↔ φ